Solvability of Periodic Boundary-value Problems for Second-order Nonlinear Differential Equation Involving Fractional Derivatives
نویسندگان
چکیده
This article concerns the existence of solutions to periodic boundaryvalue problems for second-order nonlinear differential equation involving fractional derivatives. Under certain linear growth condition of the nonlinearity, we obtain solutions, by using coincidence degree theory. An example illustrates our results.
منابع مشابه
On boundary value problems of higher order abstract fractional integro-differential equations
The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...
متن کاملPeriodic boundary value problems for nonlinear impulsive fractional differential equation
In this paper, we investigate the existence and uniqueness of solution of the periodic boundary value problem for nonlinear impulsive fractional differential equation involving Riemann-Liouville fractional derivative by using Banach contraction principle.
متن کاملSolvability of multi-point boundary value problem of nonlinear impulsive fractional differential equation at resonance
Differential equation with fractional order have recently proved valuable tools in the modeling of many phenomena in various fields of science and engineering [1-5]. Recently, many researchers paid attention to existence result of solution of the boundary value problems for fractional differential equations at nonresonance, see for examples [6-15]. But, there are few papers which consider the b...
متن کاملA distinct numerical approach for the solution of some kind of initial value problem involving nonlinear q-fractional differential equations
The fractional calculus deals with the generalization of integration and differentiation of integer order to those ones of any order. The q-fractional differential equation usually describe the physical process imposed on the time scale set Tq. In this paper, we first propose a difference formula for discretizing the fractional q-derivative of Caputo type with order and scale index . We es...
متن کاملExistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کامل